T de Student

Se forem feitas inúmeras amostras de tamanho  a partir da mesma população e se fossem tiradas as médias de uma variável dessa população que possui uma distribuição normal, a distribuição dessas inúmeras médias seguiria uma distribuição t de Student. Por exemplo, imaginemos que a altura das pessoas segue uma distribuição normal. Se selecionarmos diversas amostras aleatórias de 100 pessoas e calculássemos a média da altura das pessoas de cada amostra, essa média da altura das pessoas seguirá uma distribuição t de Student.

Perceba que, na distribuição t de Student, valores muito baixos ou muito altos tem menor probabilidade de ocorrer, indicando que é menos provável que a média de uma amostra apresente valores muito distantes da média da população.

O formato da distribuição t de Student depende do número de graus de liberdade. Quanto maior o número de graus de liberdade, mais “concentrada” é a distribuição. Para valores muito grandes de graus de liberdade, a distribuição t de Student se aproxima da distribuição normal.

Teste t consiste em formular uma hipótese nula e consequentemente uma hipótese alternativa, calcular o valor de  conforme a fórmula apropriada (abaixo) e aplicá-lo à função densidade de probabilidade da distribuição t de Student medindo o tamanho da área abaixo dessa função para valores maiores ou iguais a . Essa área representa a probabilidade da média dessa(s) amostra(s) em questão ter(em) apresentado o(s) valor(es) observado(s) ou algo mais extremo. Se a probabilidade desse resultado ter ocorrido for muito pequena, podemos concluir que o resultado observado é estatisticamente relevante. Essa probabilidade também é chamada de p-valor ou valor p. Consequentemente, o nível de confiança  é igual a 1 – p-valor.

Normalmente é usado um “ponto de corte” para o p-valor ou para o nível de confiança para definir se a hipótese nula deve ser rejeitada ou não. Se o p-valor for menor que esse “ponto de corte”, a hipótese nula é rejeitada. Caso contrário, a hipótese nula não é rejeitada.